boilercv_pipeline.cli.experiments
#
Run DVC experiments.
Module Contents#
Classes#
Functions#
Run experiment. |
API#
- class boilercv_pipeline.cli.experiments.Forceable(
- /,
- **data: typing.Any,
Bases:
pydantic.BaseModel
Forceable model.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class boilercv_pipeline.cli.experiments.Sample(
- /,
- **data: typing.Any,
Bases:
boilercv_pipeline.cli.experiments.Forceable
Run sample experiment.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- __call__()#
Run experiment with just the sample video.
- class boilercv_pipeline.cli.experiments.Trackpy(
- /,
- **data: typing.Any,
Bases:
boilercv_pipeline.cli.experiments.Forceable
Run TrackPy object finding experiment.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- __call__()#
Run TrackPy object finding experiment.
- boilercv_pipeline.cli.experiments.run_experiment(
- exp: str = '',
- stages: collections.abc.Iterable[str] | None = None,
- params: pathlib.Path = Path('params.yaml'),
- force: bool = False,
Run experiment.