boilercv_pipeline.models.params
#
Pipeline stages model.
Submodules#
Package Contents#
Classes#
Parameter constants. |
|
Stage parameters. |
|
Stage parameters. |
Functions#
Set display options. |
|
Render dataframes as Markdown, facilitating MathJax rendering. |
|
Get floating number format at given precision. |
Data#
API#
- class boilercv_pipeline.models.params.Constants(
- /,
- **data: typing.Any,
Bases:
pydantic.BaseModel
Parameter constants.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- boilercv_pipeline.models.params.const#
‘Constants(…)’
- boilercv_pipeline.models.params.set_display_options(
- scale: float = const.scale,
- precision: int = const.precision,
- display_rows: int = const.display_rows,
Set display options.
- boilercv_pipeline.models.params.display_markdown(
- df: pandas.DataFrame,
- floatfmt: str = '#.3g',
Render dataframes as Markdown, facilitating MathJax rendering.
Notes#
- boilercv_pipeline.models.params.head(
- df: pandas.DataFrame,
- boilercv_pipeline.models.params.get_floatfmt(
- precision: int = 3,
Get floating number format at given precision.
- class boilercv_pipeline.models.params.Params(
- /,
- **data: context_models.types.Data,
Bases:
boilercv_pipeline.models.stage.Stage
,typing.Generic
[boilercv_pipeline.models.params.types.Deps_T
,boilercv_pipeline.models.params.types.Outs_T
]Stage parameters.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- deps: boilercv_pipeline.models.params.types.Deps_T#
None
Stage dependencies.
- outs: boilercv_pipeline.models.params.types.Outs_T#
None
Stage outputs.
- set_display_options( )#
Set display options.
- move_legend(
- ax: matplotlib.axes.Axes,
- loc='lower center',
- bbox_to_anchor=(0.5, 1.0),
- ncol=3,
Move legend.
- preview(
- df: boilercv_pipeline.models.params.types.DfOrS_T,
- cols: collections.abc.Iterable[boilercv_pipeline.models.column.Col] | None = None,
- index: boilercv_pipeline.models.column.Col | None = None,
- f: boilercv_pipeline.models.params.types.Preview[boilercv_pipeline.models.column.types.Ps] = head,
- ncol: int = 0,
- *args: boilercv_pipeline.models.column.types.Ps.args,
- **kwds: boilercv_pipeline.models.column.types.Ps.kwargs,
Preview a dataframe in the notebook.
- classmethod hide()#
Hide unsuppressed output in notebook cells.
- class boilercv_pipeline.models.params.DataParams#
Bases:
boilercv_pipeline.models.params.Params
[boilercv_pipeline.models.params.types.Deps_T
,boilercv_pipeline.models.params.types.Outs_T
],typing.Generic
[boilercv_pipeline.models.params.types.Deps_T
,boilercv_pipeline.models.params.types.Outs_T
,boilercv_pipeline.models.params.types.Data_T
]Stage parameters.
- model_config#
‘get_boilercv_pipeline_config(…)’
- dvc_validate_params(
- info: boilercv_pipeline.sync_dvc.types.DvcValidationInfo,
Extend stage plots for
dvc.yaml
with named plots if plots haven’t been set.
- data: boilercv_pipeline.models.params.types.Data_T#
None
Stage data.